Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Med Chem ; 23(9): 713-735, 2023.
Article in English | MEDLINE | ID: mdl-36786146

ABSTRACT

Tropical, vector-borne, and neglected diseases with a limited number of medication therapies include Leishmaniasis, Malaria, Chagas and Human African Trypanosomiasis (HAT). Chromones are a large class of heterocyclic compounds with significant applications. This heterocycle has long aroused the interest of scientists and the general public from biosynthetic and synthetic points of view owing to its interesting pharmacological activities. Chromones and their hybrids and isomeric forms proved to be an exciting scaffold to investigate these diseases. The in vitro activities of Chromone, Chromane, and a panel of other related benzopyran class compounds against Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, Trypanosoma cruzi, and numerous Leishmanial and Malarial species were investigated in our previous studies. The current article briefly describes the neglected diseases and the current treatment. This review aims to attempt to find better alternatives by scrutinizing natural and synthetic derivatives for which chromones and their analogues were discovered to be a new and highly effective scaffold for the treatment of neglected diseases, including compounds with dual activity or activity against multiple parasites. Additionally, the efficacy of other new scaffolds was also thoroughly examined. This article also discusses prospects for identifying more unique targets for the disease, focusing on flavonoids as drug molecules that are less cytotoxic and high antiprotozoal potential. It also emphasizes the changes that can be made while searching for potential therapies-comparing existing treatments against protozoal diseases and the advantages of the newer chromone analogues over them. Finally, the structure- activity relationship at each atom of the chromone has also been highlighted.


Subject(s)
Antiprotozoal Agents , Malaria , Trypanosomiasis, African , Animals , Humans , Neglected Diseases/drug therapy , Retrospective Studies , Trypanosomiasis, African/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Malaria/drug therapy , Chromones/pharmacology , Chromones/therapeutic use
2.
J Biomol Struct Dyn ; 40(23): 12592-12607, 2022.
Article in English | MEDLINE | ID: mdl-34488559

ABSTRACT

Leishmaniasis is one of today's most neglected diseases. The emergence of new anti-leishmanial therapies emphasizes several study groups funded by the World Health Organization. The present investigation will focus on the research to determine a few new potential derivatives of ß-carboline ester derivatives against leishmaniasis. The in-silico predicted ADMET properties of most of the titled compounds are in an acceptable range and having drug like properties. Among all the tested analogs, compound ES-3 (EC50 3.36 µM; SI > 29.80) showed comparable and equipotent anti-leishmanial activity as that of standard drug miltefosine (EC50 4.80 µM; SI > 20.80) against amastigote forms of the tested L. infantum strain. Two compounds ES-6 and ES-10 exhibited significant activity with EC50 10.16, 13.56 µM; SI > 4.90, 7.37, respectively. In-silico based molecular docking and dynamics study of the significantly active analog also performed to study the putative binding mode, interaction pattern at the active site of the target leishmanial trypanothione reductase enzyme as well as stability of the target-ligand complex. The changes in the conformation of molecules during MD (frame wise trajectory analysis) provided new insights for the development of novel potent molecules. These findings will further give insight that will help modify the compound ES-3 for better potency and the design of novel inhibitors for leishmaniasis.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis , Humans , Molecular Docking Simulation , Carbolines/pharmacology , Carbolines/chemistry , Leishmaniasis/drug therapy , Molecular Conformation , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...